Metals

Rare earths-free thermoelectric converters now viable – research

CBCIE Time:Jul 27, 2022 09:34 Source:mining

Researchers at Japan’s Hokkaido University have synthesized a barium-cobalt oxide thermoelectric converter aimed at transforming waste heat into energy without having to use rare earths.

In a paper published in the journal ACS Applied Materials & Interfaces, the scientists state that their new converter is reproducibly stable and efficient at extremely high temperatures.

The article explains that thermoelectric conversion is driven by the Seebeck effect: when there is a temperature difference across a conducting material, an electric current is generated. However, the efficiency of thermoelectric conversion is dependent on a figure called the thermoelectric figure of merit ZT. Historically, oxide-based converters had a low ZT, but recent research has revealed many candidates with high ZT, but their stability at high temperatures was not well documented. Both these factors have led to these converters being of limited use.

Yet, the Hokkaido researchers note that one of the alternatives is oxide-based thermoelectric materials, but the primary drawback these suffer from is a lack of evidence of their stability at high temperatures.

This is where lead researcher Hiromichi Ohta and his team come in. Having worked on layered cobalt oxide films for over two decades, they sought to examine the thermal and chemical stability of these films, as well as measure their ZT values at high temperatures. They tested cobalt oxide films layered with sodium, calcium, strontium or barium, analyzing their structure, resistivity, and thermal conductivity.

They found that, of the four variants, the barium cobalt oxide layered film retained its stability in terms of structural integrity and electrical resistivity at temperatures as high as 600°C. In comparison, the sodium- and calcium cobalt oxide films were only stable until 350°C, and the strontium cobalt oxide film was stable up to 450°C. The ZT of the barium cobalt oxide film increased with the temperature, reaching ~0.55 at 600°C, comparable to some commercially available thermoelectric converters.

“Our study has shown that barium cobalt oxide films would be excellent candidates for high-temperature thermoelectric conversion devices,” Ohta said in a media statement.

All articles, pictures, reports and other original works on the website that are attributed to CBCIE are non-public information, only for members. No one may reproduce or otherwise use the original content of this website without our permission. If you need to use it, please call
+86 18135172048 to apply for authorisation. CBCIE reserves the right to pursue any infringement and citation contrary to the original intent.

Disclaimer:CBCIE is committed to building a comprehensive and authoritative metal information platform, and strives to provide a full range of data and information services and decision-making support for metal industry researchers and practitioners. However, the information on this website is for reference only and is not intended as direct advice for investors' decision-making. Any investment, purchase, sale or operation based on the information on this website should be at your own risk and is not related to CBCIE.

Contact us

Contact us for more CBC information and services.

Get in touch
CBC专家咨询 关闭
close
WeCom

CS Manager:
Zizhen Zhang

+86 18135172048